
eZ Find Extension

Documentation

version 2.0.0

Table of Contents
1.Introduction..4

1.1.Target audience..4
1.2.Conventions..4
1.3.More resources...4
1.4.Contacting eZ...5
1.5.Copyright and trademarks..5

2.How does eZ Find work?...6

3.Installation ...6

3.1.Very first things to do..6
3.2.Starting Solr..6

3.2.1.High performance, large sites...7
3.2.2.Starting Solr as a service..7

 4.1.1.1 Redhat based systems...7
 4.1.1.2 Debian based systems...8

4.Configuration..8

 4.1 Indexing multiple sites...8
 4.2 Searching multiple sites...8
 4.3 Enabling eZ Find..8
 4.4 More configuration options..9

 4.4.1 SearchHandler...9
 4.4.2 Index time boosting..9
 4.4.3 DelayedIndexing...9

 4.4.3.1 Cronjob: ezfindexcontent..9
 4.4.3.2 Cronjob: ezfoptimizeindex..10
 4.4.3.3 OptimizeOnCommit..10

5.Indexing..10

5.1.Updating the search index..10

6.Customization..10

6.1.Facets...10
6.2.Template fetch functions...11

6.2.1.Fetch function search..11
6.2.2.Fetch function moreLikeThis...22

6.3.Customizing result templates...22

eZ Find Extension Documentation

6.4.Elevation, or “Sponsored results”..24

7.Using eZ Find..27

7.1.Basic search..27
7.2.Search term options..27

7.2.1.Phrase search..27
7.2.2.Exclude or require terms..27
7.2.3.Searching for multiple terms..27

7.3.Advanced search...28
7.3.1.Content class limitation..28
7.3.2.Other limitations...28

eZ Systems Page 3 / 28

eZ Find Extension Documentation

1. Introduction
eZ Find is a search extension for eZ Publish, providing more functionality and better
results than the default search in eZ Publish. This manual is a guide to installing,
configuring and using eZ Find.
eZ Find enables site visitors to quickly and easily locate information on eZ Publish sites by
providing relevant search results. High scalability and performance ensures that the eZ
Find search engine can support enterprise-level sites.
eZ Find is a certified extension that integrates smoothly with all eZ Publish business
solutions (eZ Publish On Demand, eZ Publish Now and eZ Publish Premium). With eZ
Publish Premium, eZ Find can be further customized to meet specific requirements and
site structures.

1.1. Target audience
This manual describes how to install, configure and use the eZ Find search extension, and
thus is appropriate for system administrators and end users of the extension.

1.2. Conventions
● Code samples, functions, variable names, and so on are printed in monospace

font.

● Filenames and paths are printed in monospace italic font.

● Commands are printed in monospace bold font.

● Elements of graphical user interfaces (such as buttons and field labels) are printed
in bold font.

● Component names (such as an application) are capitalized, for example
“Administration Interface”.

● In sample URLs, replace “example.com” with the domain name of your site.
● The screenshots in this document might have been modified to fit the page or to

illustrate a point, and therefore might not exactly match the display on your site.

1.3. More resources
For assistance with eZ Publish, refer to the following resources:

● eZ Publish documentation: eZ Find is an extension to eZ Publish. Where
appropriate, there are links in this document to the online versions of the eZ Publish
documentation, located at http://ez.no/doc.

● eZ Publish forums: The forums on the eZ Systems website are a valuable
community-driven resource, where eZ Publish users provide assistance and
support to each other. Accessing the forums is free. The forums are located at
http://ez.no/community/forum.

● Support from eZ Partners: eZ's global network of partners provides professional
assistance for all eZ products. To find a partner, contact sales@ez.no.

● Other eZ solutions: For information about other solutions provided by eZ Systems,

eZ Systems Page 4 / 28

mailto:sales@ez.no
http://ez.no/community/forum
http://ez.no/doc
http://ez.no/doc

eZ Find Extension Documentation

refer to http://ez.no/products/solutions.
● Training and certification: eZ Systems and eZ Partners offer training courses and

certifications for eZ Publish. Contact sales@ez.no or visit
http://ez.no/services/training for more information.

● Sending feedback about eZ Find : http://issues.ez.no/ezfind

1.4. Contacting eZ
For non-technical questions regarding eZ Publish or eZ Systems, please contact us:

● http://ez.no/company/contact
● info@ez.no

1.5. Copyright and trademarks
Copyright © 2008 eZ Systems AS. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".
Other product and company names mentioned in this manual may be the trademarks of
their respective owners. We use trademark names in an editorial fashion to the benefit of
the trademark holder; therefore, these names are not marked with trademark symbols. All
terms known to be trademarks have been appropriately capitalized. We cannot attest to
the accuracy of this usage, and usage of a term in this book should not be regarded as
affecting the validity of any trademark or servicemark.

eZ Systems Page 5 / 28

http://www.gnu.org/copyleft/fdl.html#TOC1
http://www.gnu.org/copyleft/fdl.html#TOC1
mailto:info@ez.no
http://ez.no/company/contact
http://issues.ez.no/ezfind
http://ez.no/services/training
mailto:sales@ez.no
http://ez.no/products/solutions

eZ Find Extension Documentation

2. How does eZ Find work?
eZ Find is an extension that provides enhanced search functionality for eZ Publish sites. It
uses the Open Source enterprise search server Solr, which runs on the Lucene Java
search library. While the default search function in eZ Publish stores the search index in
the database, Solr uses its own highly optimized file for storing its index.
eZ Find uses Solr to handle indexing and searching with an eZ Publish-specific set of
configuration files. While indexing, eZ Find uses this specific configuration to do index and
query-time analysis of text and keywords. When users perform searches, eZ Find
generates a Solr search query based on the user input that is submitted to the Solr back
end. All communication with Solr is via Web services (using the REST model).

3. Installation
The extension requires the Java Runtime Environment (JRE) version 5. (JRE version 6 is
unstable with eZ Find). This can be obtained from the Java download pages. Follow the
installation instructions for JRE as described on the Java home pages.
After JRE is installed, download the eZ Find extension. The extension can be downloaded
from the eZ website at http://ez.no/ezfind. Save the downloaded file to the root of your eZ
Publish installation, then extract the files.

3.1. Very first things to do

You will need to add a table in the database used by your eZ Publish instance. You can do
so as follows (from eZ Publish's root directory), in the case you are using MySQL:

mysql -u <user> -p <database_name> <
extension/ezfind/sql/ezfind_elevate_configuration.mysql.sql

The procedure is very similar in case you are using another RDMS. Please refer to the
documentation reference for your DBMS if you are experiencing issues.

3.2. Starting Solr

First, navigate to the extension/ezfind/java directory.

Start Solr by running the command:
java -Dezfind -jar start.jar

(Make sure the user executing the Java program has write access to the folders
extension/ezfind/java/solr/data and extension/ezfind/java/logs).

This will start the Solr application in the bundled servlet container (Jetty). This application
must be running for the indexing and search operations to work. If you are working directly
on the web server, you can verify that Solr is running by accessing the URL
http://localhost:8983/solr/admin/, or replace “localhost” in the URL with the IP address of
the server.
The “-Dezfind” option makes it easier to identify the eZ Find Java process.

eZ Systems Page 6 / 28

http://localhost:8983/solr/admin/
http://ez.no/ezfind
http://java.sun.com/javase/downloads/index.jsp
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/solr/

eZ Find Extension Documentation

If the Java process dies during indexing or searching, the memory limits (“heap space”)
need to be increased. Specify the heap space as startup parameters, for example:

java -Dezfind -Xms512M -Xmx512M -jar start.jar

This will allocate a heap space of 512 MB.

3.2.1. High performance, large sites
For large volumes and traffic (search takes about 30% of ez.no page requests), you need
to setup Solr in simalar ways as the database engine (64 bit OS, 64 bit
application/service).

Just like MySQL needs to scale up its InnoDB pool size beyond 2GB, so does eZ
Find/Solr, though usually it is fine with less RAM
It is all about Java VM parameters

If you don't have a 64 bit OS for your server, try the following:

 java -server -Xmx600m -Xms600m -XX:+UseParallelGC -XX:
+AggressiveOpts -XX:NewRatio=5 -jar start.jar

If you do have a 64 bit OS, use a 64 bit Sun JRE (1.5 for Linux, 1.6 for
Solaris/Windows/Mac OS X)

 java -server -d64 -Xmx600m -Xms600m -XX:+UseParallelGC -XX:
+AggressiveOpts -XX:NewRatio=5 -jar start.jar

3.2.2. Starting Solr as a service
eZ Find provides scripts for running eZ Find as a service on Linux platforms. The
supported platforms are Debian and RedHat based distributions.

 4.1.1.1 Redhat based systems

Copy the file extension/ezfind/bin/scripts/redhat/solr to your /etc/init.d folder. Edit the file,
and configure the required variables:
SOLR_HOME
Set this variable to the java folder of the ezfind extension you want to run as a service.
Example: SOLR_HOME=/var/www/ezpublish/extension/ezfind/java
JAVA_HOME
If your java executable is not located in /usr/bin/java or /usr/local/bin/java, and the
JAVA_HOME environnement variable is not set, you can specify the path to your java
folder here.
Example: JAVA_HOME=/path/to/javafolder

eZ Systems Page 7 / 28

eZ Find Extension Documentation

 4.1.1.2 Debian based systems

Copy the file extension/ezfind/bin/scripts/debian/solr to your /etc/init.d folder.
You can then use update-rc.d to set solr as auto-start in the required run levels:
$ update-rc.d solr defaults
Finally, edit the file, and configure the required variables:
SOLR_HOME
Set this variable to the java folder of the ezfind extension you want to run as a service.
Example: SOLR_HOME=/var/www/ezpublish/extension/ezfind/java.

4. Configuration
 4.1 Indexing multiple sites

eZ Find can index multiple eZ Publish installations using the same instance of Solr. This is
enabled by default. All indexed content objects are associated with a unique installation
key. The installation key is used to identify the installation where the content originates.
The installation key is stored in the table ezsite_data, with the name
ezfind_site_id.
To specify that content from one installation should be included in the search index on
other installations, use the option IndexPubliclyAvailable set in
extension/ezfind/settings/ezfind.ini.append.php. Only content that is
accessible to anonymous users will indexed on other eZ Publish installations.

IndexPubliclyAvailable=enabled

This value is set to enabled by default.

 4.2 Searching multiple sites
As described above, it is possible to search for content on several eZ Publish installations
simultaneously. To show results from multiple installations, check the configuration option
SearchOtherInstallations in
extension/ezfind/settings/ezfind.ini.append.php.

[SiteSettings]
SearchOtherInstallations=enabled

 4.3 Enabling eZ Find
To enable the extension, open settings/override/site.ini.append.php, and add
the following parameter in the [ExtensionSettings] block:

ActiveExtensions[]=ezfind

To use the correct templates for the ezwebin (Website Interface) extension, the eZ Find
extensions must be enabled before the ezwebin extension.

eZ Systems Page 8 / 28

eZ Find Extension Documentation

 4.4 More configuration options

 4.4.1 SearchHandler
The default search handler can be configured by default in ezfind.ini or specified with the
dedicated ezfind template search function

Setting Description
standard The Solr standard handler is called with all syntax supported,

searching is done against all searcheable fields
simplestandard the Solr standard handler is called with all all syntax

supported, searching is done against the aggregated field
ezf_df_text

ezpublish the recommended handler (Solr dismax based) for typical user
 searches using keywords without boolean or other operators
(prefixes + and – are supported)

heuristic depending on the presence of special characters indicating
boolean, wildcard or fuzzy expressions, either the simplestandard or
dismax handler is called

Default:
DefaultSearchHandler=heuristic

 4.4.2 Index time boosting
Optionally, you can specify boost factors during indexing. When the backend calculates
the relevancy scores, the boost factors are taken into account
See the inline comments in ezfind.ini for more

 4.4.3 DelayedIndexing
Indexing content in solr can be a time consuming operation, and can impact publishing
time depending on the solr index site.
It is possible to delay content indexing by enabling [SearchSettings].DelayedIndexing in
site.ini (global override). The indexing operations will be queued for deferred handling.
To have the objects actually indexed, you need to enable two cronjobs: ezfindexcontent,
and ezfoptimizeindex. Refer to the official eZ publish documentation 1 to find out how to
configure eZ publish cronjobs.

 4.4.3.1 Cronjob: ezfindexcontent

This cronjob has to be executed frequently. Objects published or modified between two
executions of ezfindexcontent won't be returned or up-to-date in search results. Running it
every five minutes, or even every minute, is a good option.
Suggested frequency: frequent (every X minutes)

1 http://ez.no/doc/ez_publish/technical_manual/4_0/features/cronjobs/running_cronjobs

eZ Systems Page 9 / 28

http://ez.no/doc/ez_publish/technical_manual/4_0/features/cronjobs/running_cronjobs

eZ Find Extension Documentation

Usage: php runcronjobs.php -s <siteaccess> ezfindexcontent

 4.4.3.2 Cronjob: ezfoptimizeindex

This cronjob will optimize the solr index so that solr handles search queries faster. It
doesn't have to be executed very frequently, as optimizing is a heavy operation.
Suggested frequency: infrequent (once or twice a day, or every X hours if content
publishing is really frequent)
Usage: php runcronjobs.php -s <siteaccess> ezfoptimizeindex

 4.4.3.3 OptimizeOnCommit

If DelayedIndexing is enabled, OptimizeOnCommit should be disabled in order to avoid
useless optimization calls on commit during content indexing.
This setting can be found in ezfind.ini.

5. Indexing
5.1. Updating the search index

To add content to the search engine index, run the updatesearchindexsolr.php
script using the administration siteaccess as the specified siteaccess. For example:

php extension/ezfind/bin/php/updatesearchindexsolr.php -s <admin
siteaccess> --php-exec=php --conc=2

The indexing process typically indexes at a rate of 5 to 15 objects per second. However, if
you are using external filters to convert binary files to plain text, this may add more
processing time.

The --php-exec parameter must specify the path to the PHP executable used. This
parameter is used to start sub-processes in the indexing operation. This is done to prevent
internal memory and reference problems.

The --conc parameter specifies how many concurrent processes should be used to
index the content. This number should be equal to the number of processor cores on the
server.

An optional parameter is –-clean which will delete all existing entries (and also the spell
check index terms in the default configuration)

6. Customization
6.1. Facets

Facets1 were introduced in eZ Find 2.0, and enable you to create browse-based search
functionality. In other words, the search results can be further narrowed after the original
search has been made. This is sometimes called “drilling down” into the results. Facets

1 http://www.searchtools.com/info/faceted-metadata.html

eZ Systems Page 10 / 28

http://www.searchtools.com/info/faceted-metadata.html

eZ Find Extension Documentation

refer to the characteristics of the content objects in the results, such as their class, author,
and translation. The default templates provide some simple facet examples, although eZ
Find is capable of providing much more functionality.

To use facets, you must customize the search templates. To make this easier, the
template operators facetParameters and filterParameters have been added,
which provide default parameters to implement facet functionality. Facet-related
parameters are described in more detailed in the next section about the eZ Find fetch
function.

6.2. Template fetch functions
New in eZ Find 2.0 are dedicated template fetch functions:
fetch(ezfind, search, hash(<parameters>)) that returns eZ Find search
results exposing the powerful features of the backend Solr;
fetch(ezfind, moreLikeThis, hash(<paramerters>)) that will find related
content with heuristic techniques;
fetch(ezfind, rawSolrRequest, hash(<parameters>)) which allows for “raw”
Solr requests (not for normal use, but for example to search “foreign” Solr or Lucene
indexes).

6.2.1. Fetch function search
The available parameters are:

Name Type Description Required
query String Search query string No

eZ Systems Page 11 / 28

eZ Find Extension Documentation

offset Integer Result offset No
limit Integer Result count limit No
sort_by Array Sort definition No
facet Array Facet query definition No
filter Mixed Search filter, independent from ranking No
class_id Mixed Class ID limitation No
subtree_array Array List of subtree limitations No
section_id Integer Section filter No
ignore_visibility Boolean Visibility filter No
limitation Array Override of the current user's access array to the

'read' function of the 'content' module.
No

as_objects Boolean Not implemented yet No
spell_check Array Configure the spellcheck behaviour No
query_handler String Which search handler to use No

query

The query parameter can contain one or multiple search terms. The query is used to rank
and limit the search results.
For information about standard Solr query syntax, see:
http://wiki.apache.org/solr/SolrQuerySyntax and
http://lucene.apache.org/java/docs/queryparsersyntax.html
Example:
fetch(ezfind, search, hash(query, 'eZ Systems'))

Returns:
Search result with documents containing the words “ez” and “systems”.
Example:
fetch(ezfind, search, hash(query, '”eZ Systems”'))

Returns:
Search result with documents containing the term “ez systems”.

offset

Search result offset. The default value is “0”.
Example:
fetch(ezfind, search, hash(query, 'eZ Systems',

 offset, 20))

Returns:

eZ Systems Page 12 / 28

http://lucene.apache.org/java/docs/queryparsersyntax.html
http://wiki.apache.org/solr/SolrQuerySyntax

eZ Find Extension Documentation

Search result containing the words “ez” and “systems”, starting from the 20th result.

limit

Search result count limitation. The default value is “10”.
Example:
fetch(ezfind, search, hash(query, 'eZ Systems',

 offset, 0,

 limit, 25))

Returns:
Search result with the first 25 results that contain the words “ez” and “systems”.

sort_by

The sort_by parameter is used to define the sort order of the search result. It supports
the following options:

Key Description
relevance Default option. Sorts the result by Solr internal relevancy

calculations1.
score Alias to “relevance”
<class attribute> Content class attribute, following the syntax

“<class_identifier>/<class_attribute>[/<sub_structure]”
modified Modified time
published Published time
author Author name
class_name Content class name
class_id Content class identifier or content class ID
name Content object name
path Node location path
section_id Section ID

All sort keys can be used to sort in ascending (“asc”) or descending (“desc”) order. It is
also possible to specify multiple sort options in the same fetch function.
Example:
fetch(ezfind, search, hash(query, 'eZ Systems',
 sort_by, hash(class_name, asc,
 published, desc)))
Returns:
All documents containing the words “ez” and “systems”, sorted by the content class name
in ascending order, then by the published time in descending order.

1 http://lists.tartarus.org/pipermail/xapian-discuss/2004-November/000571.html

eZ Systems Page 13 / 28

http://lists.tartarus.org/pipermail/xapian-discuss/2004-November/000571.html

eZ Find Extension Documentation

<class_attribute>

Sorting can be done based on a content class attribute field, specified by its ID number or
identifier. If the content class attribute datatype extends ezfSolrDocumentFieldBase,
the sub-structure can be used as well.
Example:
fetch(ezfind, search, hash(query, 'eZ Systems',

 sort_by, hash('article/title', 'asc'
)))

Returns:
All documents containing the words “ez” and “systems”, sorted by the article title in
ascending order.
Example:
fetch(ezfind, search, hash(query, 'eZ Systems',

 sort_by,
hash('article/options/opt1', 'asc')))

Returns:
All documents containing the words “ez” and “systems”, sorted by the “opt1” part of the
article options.
Example:
fetch(ezfind, search, hash(query, 'eZ Systems',

 sort_by, hash(234, 'asc')))

Returns:
All documents containing the words “ez” and “systems”, sorted by the content class
attribute with an ID of “234”, in ascending order.

facet

The facet parameter is used to define the facet query that should be performed. The
results include information about the facets and facet groups relevant to the current
search and are returned in addition to the normal query results. It is possible to perform
multiple facet queries in one fetch request.
The following facet options are available:

Option Description
field The object characteristic that will serve as the facet. This can be a field,

specified using the syntax
“<class_identifier>/<class_attribute>[/<sub_structure]”
The sub-structure is only available for complex datatypes. To enable
“<sub_structure>” support, the datatype must contain distinct sub-items
(such as the alternative image text for images) and these sub-items must be
indexed.

Other supported characteristics are:
● author – content object author

eZ Systems Page 14 / 28

eZ Find Extension Documentation

● class – content class
● translation – translation

query Facet query1. The facet queries are used to specify facets for the sub-
selection of content object attributes.

prefix Limits the facet fields to only list facet groups where the field value starts
with the prefix.

sort Sort by “count” or “alpha”. “alpha” will sort the facet results alpha-
numerically by field value.

limit Maximum number of facet groups to return. The default value is “20”.
offset Offset. The default value is “0”.
mincount Returns only facet groups with more results than the specified minimum

count.
The default value “0”.

missing If set to “true”, the results will also include facet groups with no results.
The default value is “false”.

date.start Start date for facet. This must be specified using a strict dateTime syntax.
date.end End date for facet. This must be specified using a strict dateTime syntax.
date.gap Size of date range.

Below are examples and more detailed descriptions of the different facet options.
Example:
fetch(ezfind, search, hash('query', 'Cabriolet',

 'facet', array(hash('field',
'car/model',

 'limit', 20))
))

Returns:
Normal result set of 10 documents containing the word “cabriolet”, and a facet list with 20
groups of car models (this is specific to “model” attributes of objects of the “car” class) also
containing the word “cabriolet”.

Example:
fetch(ezfind, search,

 hash('query', 'Cabriolet',

 'facet', array(hash('field', 'car/make',

 'limit', 25),

 hash('field', 'car/size',

 'missing', true(),

 'limit', 25))))

1 http://wiki.apache.org/solr/SimpleFacetParameters#head-529bb9b985632b36cbd46a37bde9753772e47cdd

eZ Systems Page 15 / 28

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://wiki.apache.org/solr/SimpleFacetParameters#head-529bb9b985632b36cbd46a37bde9753772e47cdd

eZ Find Extension Documentation

Returns:
Normal result set with a list of 10 documents containing the word “cabriolet”, a facet list
with 25 groups of car makes (this is specific to “make” attributes of objects of the “car”
class) and a facet list with 25 groups of car sizes (this is specific to “size” attributes of
objects of the “car” class), both containing the word “cabriolet”. The “car/size” results will
also list elements with 0 matching elements.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 facet, array(hash(query, 'path:2'),

 hash(query, 'path:5'))))

Returns:
Normal result set with a list of 10 documents containing the word “cabriolet”, and a facet
list with groups in the subtree with a parent node with an ID of “2”, and a facet list with
groups in the subtree with a parent node with an ID of “5”.
For more information about facets, see:
http://wiki.apache.org/solr/SimpleFacetParameters

filter

The filter is used when creating faceted search templates for drill-down navigation. Filters
are used to limit the search result set without altering the relevancy sort order. Facet
results contain filter definitions that can be used directly. Custom filter definitions can also
be created.
A filter is specified by
<class_identifier>/<class_attribute>[/<sub_structure]:<value>. The
filter option may be a string or list of strings.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 filter, 'car/in_stock:1'))

Returns:
Result with documents containing the words “ez” and “systems”, having the content object
attribute “car/in_stock” with a value of “1”.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 filter, array('car/in_stock:1',

 'car/make:Alfa Romeo',

 'car/model:8C')))

Returns:
Result with documents containing the words “ez” and “systems”, having the content object

eZ Systems Page 16 / 28

http://wiki.apache.org/solr/SimpleFacetParameters

eZ Find Extension Documentation

attribute “car/in_stock” with a value of “1”, the “car/make” attribute with the value “alfa
romeo” and the “car/model” attribute with the value “8c”.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 filter, 'car/make:(Audi OR Volvo)'))

Returns:
Result with documents containing the words “ez” and “systems”, having the content object
attribute “car/make” with the value “audi” or “volvo”.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 filter, array('path:2',

 'contentclass_id:1'))

Returns:
Result with documents containing the words “ez” and “systems”, in the subtree below the
node with an ID of “2”, for objects of the content class with an ID of “1”.

Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 filter, array('or',

 array('and',
 'article/body:hello',
 'article/rating:[1 TO 10]'
),
 array('and',
 'article/body:goodbye',
 'article/rating:[10 TO 20]'
)
)

)

Returns:
Result with articles containing the words “ez” and “systems”, either having both 'hello'
present in the body and a rating comprized between 1 and 10, either both 'goodbye' in the
body and a rating comprized between 10 and 20.

class_id

This parameter is used to limit the search result to specific content classes, using either
their identifiers or ID numbers. This can also be achieved by using the filter functionality.
class_id may be either a single value or a list of values.

eZ Systems Page 17 / 28

eZ Find Extension Documentation

Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 class_id, 1))

Returns:
Result with documents containing the words “ez” and “systems”, for objects of the content
class with an ID of “1”.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 class_id, array('folder', 'article')))

Returns:
Result with documents containing the words “ez” and “systems”, for objects of the Folder
and Article content classes.

subtree_array

This parameter is a list of node IDs that specifies which subtrees should be included in the
search. The same functionality can be achieved with the filter functionality.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 subtree_array, array(23, 42)))

Returns:
Result with documents containing the words “ez” and “systems”, from the subtrees with
parent nodes with IDs of “23” and “42”.

boost_functions

This parameter is used to pass query-time boosts. This parameter is an associative array,
with two keys : 'fields' and 'functions'.
• 'fields' accepts either an associative array, either an array, placing a boost factor on

given fields (see 'Example 1' and 'Example 1 bis').
• 'functions' accepts an array, containing an expression. The latter is not be interpreted,

and must therefore comply with Solr's Functin Query syntax
(http://wiki.apache.org/solr/FunctionQuery). See Example 2.

Both can be provided simultaneously.
Example 1:
fetch(ezfind, search,

 hash('query', 'eZ Systems',
 'boost_functions',

eZ Systems Page 18 / 28

eZ Find Extension Documentation

 hash('fields',
 array('article/title:2')
)

)

Returns:
Result with documents containing the words “ez” and “systems”. The articles for which the
search words were found in the 'title' will be returned first.

Example 1 bis:
fetch(ezfind, search,

 hash('query', 'eZ Systems',
 'boost_functions',
 hash('fields',
 hash('article/title', 2)
)

)

Returns:
Identical to Example 1.

Example 2:
fetch(ezfind, search,

 hash('query', 'eZ Systems',
 'boost_functions',
 hash('functions',
 array('ord(meta_modified_dt)^2')
)

)

Returns:
Result with documents containing the words “ez” and “systems”. The most recent
documents will be returned first, the result score being influenced by the formula :
'ord(meta_modified_dt)^2'

section_id

This parameter is a integer specifying which section should be searched. The same
functionality can be achieved with the filter functionality.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 section_id, 3))

Returns:
Result with documents containing the words “ez” and “systems”, in the Media section (3).

eZ Systems Page 19 / 28

eZ Find Extension Documentation

ignore_visibility

This parameter is a boolean specifying whether or not hidden nodes should be returned in
the search results.
Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 ignore_visibility, true()))

Returns:
Result with documents containing the words “ez” and “systems”, even if they are hidden.

limitation

This parameter is an associative array overriding the current user's access rights to the
'read' function of the 'content' module. It's format must exactly match the return format of
the eZUser::hasAccessTo() method :
 Array elements : 'accessWord', 'yes' - access allowed
 'no' - access denied
 'limited' - access array describing access included
 'policies', array containing the policy limitations
 'accessList', array describing missing access rights

Example:
fetch(ezfind, search,

 hash(query, 'eZ Systems',

 limitation, hash('accessWord', 'yes')))

Returns:
Result with documents containing the words “ez” and “systems”. All results will be
returned, regardless of the current user's access rights to the 'read' function of the
'content' module.

spell_check

This parameter is an array configuring the spell check behaviour of the search. The first
parameter is a boolean value, enabling or not spellcheck. The second one is taken into
account if the first one is set to true, and is optional. It contains the identifier of the
dictionnary to be used. Only 'default' is supported for now.
The spellcheck behaviour can also be controlled from ezfind.ini.
Example:
fetch(ezfind, search,

eZ Systems Page 20 / 28

eZ Find Extension Documentation

 hash(query, 'eZy Sistems',

 spell_check, array(true(), 'default')))

Returns:
Result with documents containing the words “ezy” and “sistems”, and a spellcheck
suggestion if Solr considered these two words as uncorrectly spelled. The spellcheck
feedback is placed under $search_results.SearchExtras.spellcheck and
$search_results.SearchExtras.spellcheck_collation, $search_results being the result of
the fetch function call.

query_handler

This parameter is a string defining which Solr search handler should be used. The
possible values are :
• heuristic (default)
• simplestandard
• standard
• ezpublish

Here are the specificities of each handler :
• standard: the Solr standard handler is called with all syntax supported, searching is

done against all searcheable fields
• simplestandard: the Solr standard handler is called with all syntax supported,

searching is done against the aggregated field ezf_df_text
• ezpublish: the recommended handler (Solr dismax based) for typical user searches

using keywords without boolean or other operators except for + (required) and –
(excluding)

• heuristic: depending on the presence of special characters indicating boolean,
wildcard or fuzzy expressions, either the standard or dismax handler is called.

The default behaviour can be controlled from ezfind.ini.
Example:
fetch(ezfind, search,

 hash(query, 'eZ AND Publish',

 query_handler, 'standard'))

Returns:
Result with documents containing both words “ez” and “systems”, using the standard
handler.

eZ Systems Page 21 / 28

eZ Find Extension Documentation

6.2.2. Fetch function moreLikeThis
With the “More Like This” functionality and template function, you can use the eZ Find
backend to provide similar objects/pages for a given object.
Instead of providing keywords, the moreLikeThis function accepts a node id, object id,
url or a blob of text. After analyzing the text, the Solr engine will create a search with
keywords chosen with heuristis that depend on the indexed documents as well as the
object fed to it.
Besides the special query parameters specified below, facets, filters and sorting
parameters as in the regular search function are supported as well.

Parameter Values/Description
query_type string with possible values ('nid' | 'oid' | 'text' | 'url')

nid: node id
oid: object id
text: a blob of text
url: a url, accessible from the Solr backend

query the value, depending on query type

In some cases, you may want to provide only part of an object for getting similar objects.
The url can be useful for links to external pages, or which you want to show internal
objects that resemble the content behind the url

6.3. Customizing result templates
Customizing result templates for eZ Find is similar to customizing templates for the regular
search in eZ Publish, except that eZ Find offers some additional options.
The eZ Find fetch function returns some extra information compared to the default search
in eZ Publish, including:

● Relevancy ranking
● Language information
● Complete URLs to external results

The default search in eZ Publish returns a list of eZContentObjectTreeNode objects.
To provide extra information, eZ Find returns a list of eZFindResultTree objects. The
eZFindResultTree class extends eZContentObjectTreeNode and contains the
following extra attributes:

● is_local_installation: a boolean value indicating whether the result item is
from the installation where the search was performed

● name: the language-dependent name of the result item

● global_url_alias: URL to the result item, including the protocol and domain
name

● published: published timestamp

eZ Systems Page 22 / 28

http://ez.no/doc/ez_publish/technical_manual/current/reference/objects/ezcontentobjecttreenode

eZ Find Extension Documentation

● language_code: result item language code

● highlight: text extracts that include the search terms

● score_percent: a relative value that indicates how well the result item matches
the search terms

These values are accessible as regular attributes in the templates.
The default eZ Find result templates are stored in
extension/ezfind/design/standard/templates/content.

Custom templates for the Website Interface are provided with eZ Find. An example of the
result item is shown below
(extension/ezfind/design/ezwebin/templates/node/view/ezfind_line.tp
l). $node is an instance of eZFindResultTree.

ezfind_line.tpl code:

<div class="content-view-line">

 <div class="class-article float-break">

 <div class="attribute-title">

 <h2 style="margin-top: 0.5em; margin-bottom: 0.25em">{$node.name|wash}</h2>

 </div>

 {if is_set($node.data_map.image)}

 {if $node.data_map.image.has_content}

 <div class="attribute-image">

 {attribute_view_gui image_class=small href=concat('"',
$node.global_url_alias, '"') attribute=$node.data_map.image}

 </div>

 {/if}

 {/if}

 <div class="attribute-short">

 {$node.highlight}

 </div>

eZ Systems Page 23 / 28

eZ Find Extension Documentation

 <div class="attribute-short">

 <i>{$node.score_percent}% - {$node.global_url_alias|shorten(70, '...',
'middle')|wash} - {$node.object.published|l10n(shortdatetime)}</i>

 </div>

 </div>

</div>

6.4. Elevation, or “Sponsored results”
The “Elevation” feature allows you to make sure a given content object is placed as first
search result when searching for specific words. Let us assume that you would like your
company's description (which is an Article object) be part the first results when searching
for “services”, in any language.

Here is how you would proceed :
Navigate to eZ Publish's administration interface, and hit the “eZ Find” tab. The URL is
/ezfind/elevate/. In the “Elevate an object” box, fill the “Search query” text field with
“services”, and hit the “Elevate Object” button.

This will let you browse for the object you want to Elevate, and end up on the following
screen, where you will choose the language to apply elevation to, and confirm the
configuration :

Click on the “Elevate” button. It is now time to synchronise your local Elevate configuration

eZ Systems Page 24 / 28

eZ Find Extension Documentation

with Solr's. Do so by a simple click on the “Synchronise” button from the confirmation
screen :

As a shortcut for elevating a given object, you can use the left-click menu on nodes' icons,
like that :

Note the “Elevation detail” menu entry, which leads you to the detail of existing elevations
for this object.
And here we are, with the before and after-elevation comparison :

eZ Systems Page 25 / 28

eZ Find Extension Documentation

eZ Systems Page 26 / 28

Illustration 1: Before Elevation

Illustration 2: After Elevation

eZ Find Extension Documentation

7. Using eZ Find
7.1. Basic search

To perform a search, enter one or more search terms in the search field. To execute the
search, press Enter on your keyboard or click the Search button.

After the search is executed, the search result page is displayed. The search result page
lists the content objects that matched the search term, with some information about each
object. The total number of content objects matching the search terms is displayed under
the search term field. The search time shows how long the internal search engine took to
find the results.

Each result contains a small description of the content object. Results can also contain a
title, image, summary, relevance, location and creation date. The summary includes one
or more excerpts where the search terms occur. The relevance indicates how well the
content object fits the search terms and conditions. The title, image and location link to the
content object. Image preview is not provided for content objects located on other eZ
Publish installations.

7.2. Search term options

7.2.1. Phrase search
To search for a phrase, surround the phrase with quotation marks (for example, “Grenland
in Telemark”).

You can combine searching for a phrase with searching for individual terns. For example,
entering '“Grenland in Telemark” boat' will return all documents containing the phrase
“Grenland in Telemark” and the word “boat”.

7.2.2. Exclude or require terms
You can exclude documents that contain specific words from the search results by
prefixing the word with a minus symbol. For example, “Telemark -Grenland”:
... will return results that contain the work “Telemark” but do not contain the word
“Grenland”.
Similarly, prefix a search term with a plus symbol to specify that all documents must have
the term in order to be included in the search results.

7.2.3. Searching for multiple terms
When multiple search terms are specified, a certain number (depending on the number of
terms entered) must match the content object in order for the content object to be included
in the search results. For example, when two terms are specified, at least one of them
must match for the content object to be included in the results. When three or four terms
are specified, at least two must match. For more than four terms, 30% of the terms must
be present for a match.

eZ Systems Page 27 / 28

eZ Find Extension Documentation

These (heuristic) rules reduce the returned results to a smaller but usually more
meaningful set.

7.3. Advanced search
Advanced search is accessed by clicking the Advanced search link on the search result
page.

The Advanced search interface enables you to further limit search conditions.

The Search the exact phrase field provides the same functionality as the phrase search
described earlier.

7.3.1. Content class limitation
To limit the search to a specific content class, select the class from the dropdown list. Click
the Update attributes button to see the attributes associated with the selected content
class.

If a class attribute is selected, the search terms must occur in the selected attribute.

7.3.2. Other limitations
You can also limit search results based on the section where the content is published and
the published date.

eZ Systems Page 28 / 28

	1. Introduction
	1.1. Target audience
	1.2. Conventions
	1.3. More resources
	1.4. Contacting eZ
	1.5. Copyright and trademarks

	2. How does eZ Find work?
	3. Installation
	3.1. Very first things to do
	3.2. Starting Solr
	3.2.1. High performance, large sites
	3.2.2. Starting Solr as a service
	 4.1.1.1 Redhat based systems
	 4.1.1.2 Debian based systems

	4. Configuration
	 4.1 Indexing multiple sites
	 4.2 Searching multiple sites
	 4.3 Enabling eZ Find
	 4.4 More configuration options
	 4.4.1 SearchHandler
	 4.4.2 Index time boosting
	 4.4.3 DelayedIndexing
	 4.4.3.1 Cronjob: ezfindexcontent
	 4.4.3.2 Cronjob: ezfoptimizeindex
	 4.4.3.3 OptimizeOnCommit

	5. Indexing
	5.1. Updating the search index

	6. Customization
	6.1. Facets
	6.2. Template fetch functions
	6.2.1. Fetch function search
	6.2.2. Fetch function moreLikeThis

	6.3. Customizing result templates
	6.4. Elevation, or “Sponsored results”

	7. Using eZ Find
	7.1. Basic search
	7.2. Search term options
	7.2.1. Phrase search
	7.2.2. Exclude or require terms
	7.2.3. Searching for multiple terms

	7.3. Advanced search
	7.3.1. Content class limitation
	7.3.2. Other limitations

